Study protocol for the MobilE artificial Intelligence Solution for diabeteS Adapted Care - MELISSA trial

Elisabeth J. den Brok¹, Mikkel T. Olsen², Cecilie H. Svensson², Nefeli Dimitropoulou¹, Maria Panagiotou³, Ioannis Papathanail³, Lubnaa Abdur Rahman³, Lorenzo Brigato³, Stephan Proennecke⁴, Juliane Peters⁵, Peter R. Mertens⁵, Andriani Vazeou⁶, Asimina Mitrakou⁷, Stavros Athanasopoulos⁷, Konstantinos Makrilakis⁷, Cassy Dingena¹, Stavroula Mougiakakou³, Ulrik Pedersen-Bjergaard^{2*}, Bastiaan E. de Galan^{1*}, on behalf of the MELISSA consortium

Background

Achieving optimal glycaemic control remains a burden for many people with diabetes on intensive insulin regimens

Current digital solutions are **restricted** to certain treatment modalities and populations, potentially contributing to health disparities

Multiple factors affect glucose levels, e.g., insulin dose, carbohydrate content meal, stress, illness, exercise and sleep

Digital tools based on artificial intelligence (AI) that consider these factors can benefit daily decision making on insulin therapy and improve glycaemic control

To develop and clinically validate the MELISSA application to support people with diabetes on multiple daily insulin injections (MDI) in their daily glucose management by providing individualised basal and bolus insulin suggestions

Randomised (1:1) controlled parallel-group trial

Study duration 22 weeks

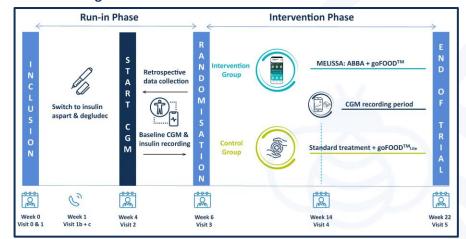
Participants: people with type 1 (n = 382) and type 2 (n = 90) diabetes, age 16-80 years, on MDI and who have a HbA1c value of 49-86 mmol/mol (6,6%-10%)

Four countries

Welcome!

[=]

Hello Stephan



Methods

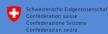
MELISSA application introduces two Al-driven features:

- 1. Adaptive basal-bolus advisor (ABBA) algorithm
- 2. Image-based automatic dietary assessment system,

goFOODTM

Study design: a 6-week run-in phase & a 16-week intervention phase during which ABBA and goFOOD™ (providing continuous-scaled energy and macronutrient information) is tested against continuation of standard treatment.

Outcomes


- **Primary outcome**: time spent in target range (TIR, 3.9-10.0 mmol/L) based on blinded CGM.
- Secondary outcomes: hypoglycaemia, glucose metrics, patient-reported outcomes (e.g., quality of life) and MELISSA usage & safety

Conclusion

MELISSA has the **potential** to **improve glycaemic** control and support people with diabetes in their selfmanagement by providing AI-driven individualised **insulin** dose **suggestions**. This digital solution is independent of currently available diabetes management devices.

